Friday 17 June 2016

New router enhances the precision of woodworking

Handheld device precisely follows a digital plan with minimal guidance from a user.



Anyone who has tried to build a piece of furniture from scratch knows the frustration of painstakingly cutting pieces of wood, only to discover that they won’t fit together because the cutting was not quite accurate enough.
That’s exactly what happened to Alec Rivers, a PhD student in the Department of Electrical Engineering and Computer Science (EECS), when he attempted to build a simple picture frame using woodworking equipment he had inherited from his grandfather. Despite measuring and aligning his tools as best he could by hand, Rivers found that he could not produce shapes with enough precision to make them all fit together. “I was getting incredibly frustrated, because just as with any home project I would cut things out and they would look about right, but none of the pieces would line up,” Rivers says.
But rather than simply throwing the pieces of wood into the trash and settling for a store-bought picture frame, Rivers decided there had to be a better way. So he and colleagues Frédo Durand, an EECS associate professor and member of the Computer Science and Artificial Intelligence Laboratory (CSAIL), and Ilan Moyer, a graduate student in the Department of Mechanical Engineering, began developing a new kind of woodworking router — a drill-like cutting tool — that could automatically cut out accurate shapes from a piece of material by following a digital design. The result is a handheld device that can adjust its position to precisely follow a digital plan when the user moves the router roughly around the shape to be cut.


No comments:

Post a Comment